The p-Block Elements

1. Assertion (A): Borazine is more reactive than benzene.

Reason (R): Borazine is isostructural with benzene

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- 2. Assertion (A): In Diborane containing eight B-H bonds only four B-H bonds are on the plane.

Reason (R): Boron in B_2H_6 is sp^2 hybridised.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **3. Assertion (A):** All the oxides of born family with the general formula M₂O₃ are basic.

Reason (R): From B_2O_3 to TI_2O_3 basic character decreases.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **4. Assertion (A):** When borax is strongly heated it forms transparent glassy bead.

Reason (R): Borax is the other name for sodium tetraborate decahydrate.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false

5. Assertion (A): CBr_4 is thermally more stable than Cl_4 .

Reason (R): C-Br bond energy is more than C-I.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **6. Assertion (A):** Boric acid is weak monobasic acid.

Reason (R): Boric acid give one H⁺ ion.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- 7. Assertion (A): Al forms $[AIF_6]^{3-}$.

Reason (R): It is octahedral complex.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **8.** Assertion (A): Anhydride of carbonic acid is CO₂.

Reason (R): Carbonic acid is dibasic.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false

- **9. Assertion (A):** CaC₂ is interstitial carbide.
 - **Reason (R):** Calcium ions are present in the Interstices.
 - (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
 - (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
 - (3) (A) is true but (R) is false
 - (4) Both (A) and (R) are false
- **10. Assertion (A):** Fullerene is the purest allotrope of carbon.
 - **Reason (R):** They have smooth structure without dangling bonds.
 - (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
 - (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
 - (3) (A) is true but (R) is false
 - (4) Both (A) and (R) are false
- **11. Assertion (A):** GeCl₄ is easily hydrolysed by water.
 - **Reason (R):** Central atom can accommodate lone pair of e⁻ from oxygen atom of water molecules in GeCl₄.
 - (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
 - (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
 - (3) (A) is true but (R) is false
 - (4) Both (A) and (R) are false
- **12. Assertion (A):** Carbon has maximum tendency of catenation among group 14.
 - **Reason (R):** C-C bond strength is very strong.
 - (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
 - (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
 - (3) (A) is true but (R) is false
 - (4) Both (A) and (R) are false

- **13. Assertion (A):** Oxides of carbon in higher oxidation state is more acidic than in lower oxidation state.
 - Reason (R): Both CO₂ and CO can exist.
 - (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
 - (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
 - (3) (A) is true but (R) is false
 - (4) Both (A) and (R) are false
- 14. Assertion (A): Heavier elements of 14th group do not form $p\pi p\pi$ bonds.
 - **Reason (R):** Atomic orbital of heavier elements are too large and do not have effective overlapping.
 - (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
 - (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
 - (3) (A) is true but (R) is false
 - (4) Both (A) and (R) are false
- **15. Assertion (A):** Carbon shows anomalous behavior in group-14.
 - **Reason (R):** Carbon has maximum covalency of 4.
 - (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
 - (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
 - (3) (A) is true but (R) is false
 - (4) Both (A) and (R) are false
- **16. Assertion (A):** H₂O is the hydride of chalcogen family which is liquid.
 - **Reason (R):** Acidic nature of hydrides of chalcogen family increases down the group.
 - (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
 - (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
 - (3) (A) is true but (R) is false
 - (4) Both (A) and (R) are false

17. Assertion (A): PF_5 and IF_5 have similar shapes.

Reason (R): All the bond lengths are equal in PF_5 .

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **18. Assertion (A):** Atomic size of F is smaller than that of Cl.

Reason (R): F–F bond is stronger than Cl–Cl bond.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- 19. Assertion (A): P₄ is more reactive than N₂.
 Reason (R): P-P bonds are relatively weaker than N≡N bond.
 - (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
 - (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
 - (3) (A) is true but (R) is false
 - (4) Both (A) and (R) are false
- **20. Assertion (A):** Noble gases have highest ionization energies in their respective periods.

Reason (R): The outermost sub-shell of noble gases in which electron enters in completely filled.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false

21. Assertion (A): The bond angle of NH_3 is greater than BiH_3 .

Reason (R): 'Bi' is metal while 'N' is non-metal.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **22. Assertion (A):** 'XeF₆' on the reaction with 'RbF' gives Rb $^{+}$ [XeF₇] $^{-}$.

Reason (R): XeF₆ is non-reactive.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **23. Assertion (A):** Tailing of Hg caused by ozone is due to formation of HgO.

Reason (R): In the presence of O₃, Hg does not loses its meniscus.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **24.** Assertion (A): The valency and oxidation number of Sulphur in S_8 respectively are 2 and 0.

Reason (R): S₈ Rhombic is the most stable allotropic form of Sulphur.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false

25. Assertion (A): Dissolution of concentrated H₂SO₄ in water is highly exothermic process.

Reason (R): Sulphuric acid is always diluted by adding acid to water slowly.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- 26. Assertion (A): N₂ is more stable than O₂.Reason (R): Bond order of N₂ is 3.
 - (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
 - (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
 - (3) (A) is true but (R) is false
 - (4) Both (A) and (R) are false
- 27. Assertion (A): PH_5 is not possible.

Reason (R): -5 oxidation state of phosphorus is not possible.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- 28. Assertion (A): NH₃ is more polar than NF₃.Reason (R): NF₃ cannot be hydrolysed.
 - (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
 - (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
 - (3) (A) is true but (R) is false
 - (4) Both (A) and (R) are false

29. Assertion (A): O_3 is better oxidizing agent than H_2O_2 .

Reason (R): O₃ converts Ag to Ag₂O.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **30.** Assertion (A): $Na_2S_2O_3$ on reaction with I_2 gives $Na_2S_4O_6$.

Reason (R): This reaction involves colour and electronic change Both.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **31. Assertion (A):** Cl₂ on reaction with NaOH (Cold and dilute) gives NaCIO₃.

Reason (R): Cl_2 get oxidized only in this reaction.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- 32. Assertion (A): $2F^- + Cl_2 \longrightarrow 2Cl^- + F_2$ is a reaction having $\Delta G = -ve$.

Reason (R): Cl_2 is better oxidizing agent than F_2 .

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false

33. Assertion (A): H_3PO_4 is less acidic than H_3PO_3 .

Reason (R): Oxidation state of phosphorus in H₃PO₄ < H₃PO₃.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **34. Assertion (A):** CN⁻ is pseudohalide.

Reason (R): (CN)₂ is pseudohalogen.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **35. Assertion (A):** Xe is the only element of group 18 which from compounds.

Reason (R): Xe does not form clatherates.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **36.** Assertion (A): Boron is Metalloid.

Reason (R): Boron shows metallic nature.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false

37. Assertion (A): The use of aluminum and its compounds for domestic purposes is now reduced considerably.

Reason (R): The highly toxic nature of aluminum is the responsible factor.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **38.** Assertion (A): Pb⁴⁺ compounds are stronger oxidizing agents than Sn⁴⁺ compound.

Reason (R): The higher oxidation states for the group 14 elements are more stable for the heavier members of the group due to 'inert pair effect'.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **39.** Assertion (A): PbI₄ of lead does not exist.

Reason (R): Pb–I bond initially formed during the reaction does not release enough energy to unpair 6s² electrons.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false

40. Assertion (A): Graphite is thermodynamically most stable allotrope of carbon.

Reason (R): $\Delta_f H^{\scriptscriptstyle \bigcirc}$ of graphite is taken as zero.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **41. Assertion (A):** Dinitrogen is inert at room temperature.

Reason (R): Dinitrogen directly combines with lithium to form ionic nitrides.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **42. Assertion (A):** N₂ is less reactive than P₄. **Reason (R):** Nitrogen has more electron gain enthalpy than phosphorus.
 - (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
 - (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
 - (3) (A) is true but (R) is false
 - (4) Both (A) and (R) are false
- **43. Assertion (A):** When a metal is treated with conc. HNO₃ it generally yields a nitrate, NO₂ and H₂O.

Reason (R): Conc. HNO_3 reacts with metal and first produces a metal nitrate and nascent hydrogen. The nascent hydrogen then further reduces HNO_3 to NO_2 .

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false

44. Assertion (A): White phosphorus is more reactive than red phosphorus.

Reason (R): Red phosphorus consists of P₄ tetrahedral units linked to one another to form linear chains.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **45.** Assertion (A): Bond angle of H_2S is smaller than H_2O .

Reason (R): Electronegativity of the central atom increases, bond angle decreases.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **46. Assertion (A):** Both rhombic and monoclinic Sulphur exist as S₈ but oxygen exists as O₂.

Reason (R): Oxygen forms $p\pi-p\pi$ multiple bond due to small size and small bond length but $p\pi-p\pi$ bonding is not possible in Sulphur.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false

47. Assertion (A): SF_6 cannot be Hydrolyzed but SF_4 can be.

Reason (R): Six F atoms in SF_6 prevent the attack of H_2O on Sulphur atom of SF_6 .

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **48. Assertion (A):** AlCl₃ forms a dimer in aqueous medium

Reason (R): In aqueous medium Al³⁺ is octa hedrally hydrated

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **49. Assertion (A):** H₃BO₃ is a weak monobasic acid

Reason (R): H₃BO₃ dissociates as

$$H_3BO_3 \rightleftharpoons \overset{\dagger}{H} + H_2BO_3$$

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false

50. Assertion (A): Aq. Solution of borax has pH < 7

Reason (R): H_3BO_3 is a weak acid with $Ka = 10^{-9}$

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **51. Assertion (A):** Diamond is covalent yet it has high mp

Reason (R): Diamond has 3-d network involving strong C-C bonds

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **52.** Assertion (A): In silicates like SiO_2 , Si, is sp^3 hybridised

Reason (R): SiO₂ is a linear molecule

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false

53. Assertion (A): R₃SiCl in used to control chain length in silicone polymers

Reason (R): Introduction of $-S_{i-R}^{R}$ group in

silicone polymers prevent it from increasing chain length

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **54. Assertion (A):** fullerenes are quite pure allotrope of C

Reason (R): fullerenes do not have any dangling bonds.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **55.** Assertion (A): $(SiF_6)^{2-}$ exist but $(SiCl_2)^{2-}$ do not

Reason (R): Si can't show covalency greater from 4

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false

56. Assertion (A): Conc. HNO₃ Can be transported in Al-container

Reason (R): Al dissolves in presence of HNO₃

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- 57. Assertion (A): BF_4^- has longer B-F bond length than BF_3

Reason (R): BF₃ Show shortening in bond length due to back bonding effect

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **58.** Assertion (A): N_2 is less reactive than P_4 Reason (R): N has more e^- gain enthalpy than P
 - (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
 - (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
 - (3) (A) is true but (R) is false
 - (4) Both (A) and (R) are false

- **Section (A):** HNO₃ makes iron passive **Reason (R):** HNO₃ makes a protective layer of ferric nitrate
 - (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
 - (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
 - (3) (A) is true but (R) is false
 - (4) Both (A) and (R) are false
- **60. Assertion (A):** HI can't be prepared by reaction of KI with Conc. H₂SO₄

Reason (R): HI has lowest HX bond strength among halogen acids

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **61. Assertion (A):** Both rhombic and Monoclinic sulphur exist as S₈ but oxygen exist as O₂

Reason (R): Oxygen forms $p\pi$ $p\pi$ multiple bond due to small size but $p\pi$ $p\pi$ bonding is not possible in sulphur

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false

62. Assertion (A): NaCl react with Conc. H₂SO₄ to give colourless fumes with pungent smell. But on adding MnO₂ the fumes become greenish yellow.

Reason (R): MnO₂ oxdises HCl to Cl₂ gas which is greenish yellow.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **63.** Assertion (A): SF_6 can be hydrolysed but not SF_4

Reason (R): In SF_6 attack of H_2O isn't possible due to steric factors

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **64. Assertion (A):** Pb₃O₄ is a basic oxide **Reason (R):** Pb₃O₄ IS mixed oxide of 2PbO

 & PbO₂
 - (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
 - (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
 - (3) (A) is true but (R) is false
 - (4) Both (A) and (R) are false

65. Assertion (A): Oxidising power of halogen is in order $F_2 > Cl_2 > Br_2 > I_2$

Reason (R): Bond strength of halogens is $F_2 < Cl_2 < Br_2 < I_2$

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **Reason (R):** IP of Xe is nearly equal to atomic O
 - (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
 - (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
 - (3) (A) is true but (R) is false
 - (4) Both (A) and (R) are false
- **67.** Assertion (A): Barium azide, when heated, gives very pure N_2

Reason (R): No redox reaction occurs during above change

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false

- **68.** Assertion (A): N_2O_5 is not possible due to Reason (R): incapability of N to show pentavalency Max. covalency of N can be 4
 - (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
 - (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
 - (3) (A) is true but (R) is false
 - (4) Both (A) and (R) are false
- **69. Assertion (A):** H₃PO₃ can form three series of salt

Reason (R): H₃PO₃ is a dibasic acid

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **70.** Assertion (A): H_3PO_2 is better reducing agent than H_3PO_3

Reason (R): H₃PO₂ has greater no of P-H bonds compared to H₃PO₃

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false

- 71. Assertion (A): ClF₃ exist but FCl₃ does not Reason (R): F is II period elements & it has no vacant d orbital to allow expansion of octet
 - (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
 - (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
 - (3) (A) is true but (R) is false
 - (4) Both (A) and (R) are false
- 72. Assertion (A): SF₆ is known but not SCl₆
 Reason (R): F has higher e⁻ gain enthalpy than Cl
 - (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
 - (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
 - (3) (A) is true but (R) is false
 - (4) Both (A) and (R) are false
- 73. Assertion (A): NH_4NO_3 , on heating gives NH_3

Reason (R): NO_3^- is an oxidising anion

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **74.** Assertion (A): $(NH_4)_2 Cr_2O_7$, on heating doesn't form any residue

Reason (R): In $Cr_2O_7^{2-}$ there are six equivalent Cr-O bonds

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false

75. Assertion (A): SO₂ can turn lime water milky & on passing in excess, milkiness disappears

Reason (R): SO_2 is an example of reducing gas

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **76.** Assertion (A): P_4 on reaction with NaOH in inert atmosphere oxidise into P_4O_{10}

Reason (R): P_4 has angle strain due to 60° bond angle in P_4

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- 77. Assertion (A): O_3 is thermodynamically less stable than O_2

Reason (R): $\Delta S = -ve$ when O_3 changes to O_2

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **78. Assertion (A):** Inert gases can be separated using activated charcoal

Reason (R): Lighter inert gases have greater adsorption on charcoal surface compared with heavier gases

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false

79. Assertion (A): PCl₅(s) is an example of molecular solid

Reason (R): PCl₅(s) exist as (PCl₄)+ (PCl₆)-

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **80. Assertion (A):** Conc. Sulphuric acid can be used to prepare HCl on reaction with NaCl

Reason (R): Conc. H₂SO₄ is a moderately strong reducing agent

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **81. Assertion (A):** NH₃ has lesser volatility then PH₃ despite of higher molecular mass of PH₃

Reason (R): N in NH_3 is sp^3 hybridised & NH_3 has pyramidal structure

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false

82. Assertion (A): Bond length B-F in BF_3 increases in presence of Lewis base.

Reason (R): BF_3 can not exhibit back bonding.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **83.** Assertion (A): BF_3 is a weaker Lewis acid than BCl_3

Reason (R): In BF, molecule, back bonding

 $(P_{\pi} - P_{\pi})$ is stronger than BCI.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **84.** Assertion (A): Ti³⁺ acts as an oxidizing agent.

Reason (R): Due to inert pair effect, Ti^+ is more stable than Ti^{3+} .

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false

ANSWER KEY																				
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ans.	2	3	4	2	1	3	2	2	4	1	1	1	2	1	2	2	4	3	1	1
Que.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
Ans.	2	3	4	2	2	1	1	2	2	2	4	4	3	2	4	3	1	3	1	1
Que.	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Ans.	3	3	1	2	3	1	1	4	3	4	1	3	1	1	3	З	1	3	3	3
Que.	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
Ans.	1	1	4	4	3	3	3	4	4	1	1	3	4	4	2	4	3	3	4	3
Que.	81	82	83	84																
Ans.	2	3	1	1																